| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoaddrid.1 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 2 | 1 | ffvelcdmi | ⊢ ( 𝑥  ∈   ℋ  →  ( 𝑇 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 3 |  | ho0val | ⊢ ( ( 𝑇 ‘ 𝑥 )  ∈   ℋ  →  (  0hop  ‘ ( 𝑇 ‘ 𝑥 ) )  =  0ℎ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑥  ∈   ℋ  →  (  0hop  ‘ ( 𝑇 ‘ 𝑥 ) )  =  0ℎ ) | 
						
							| 5 |  | ho0f | ⊢  0hop  :  ℋ ⟶  ℋ | 
						
							| 6 | 5 1 | hocoi | ⊢ ( 𝑥  ∈   ℋ  →  ( (  0hop   ∘  𝑇 ) ‘ 𝑥 )  =  (  0hop  ‘ ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 7 |  | ho0val | ⊢ ( 𝑥  ∈   ℋ  →  (  0hop  ‘ 𝑥 )  =  0ℎ ) | 
						
							| 8 | 4 6 7 | 3eqtr4d | ⊢ ( 𝑥  ∈   ℋ  →  ( (  0hop   ∘  𝑇 ) ‘ 𝑥 )  =  (  0hop  ‘ 𝑥 ) ) | 
						
							| 9 | 8 | rgen | ⊢ ∀ 𝑥  ∈   ℋ ( (  0hop   ∘  𝑇 ) ‘ 𝑥 )  =  (  0hop  ‘ 𝑥 ) | 
						
							| 10 | 5 1 | hocofi | ⊢ (  0hop   ∘  𝑇 ) :  ℋ ⟶  ℋ | 
						
							| 11 | 10 5 | hoeqi | ⊢ ( ∀ 𝑥  ∈   ℋ ( (  0hop   ∘  𝑇 ) ‘ 𝑥 )  =  (  0hop  ‘ 𝑥 )  ↔  (  0hop   ∘  𝑇 )  =   0hop  ) | 
						
							| 12 | 9 11 | mpbi | ⊢ (  0hop   ∘  𝑇 )  =   0hop |