Metamath Proof Explorer


Theorem ho0coi

Description: Composition of the zero operator and a Hilbert space operator. (Contributed by NM, 9-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 𝑇 : ℋ ⟶ ℋ
Assertion ho0coi ( 0hop𝑇 ) = 0hop

Proof

Step Hyp Ref Expression
1 hoaddid1.1 𝑇 : ℋ ⟶ ℋ
2 1 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℋ )
3 ho0val ( ( 𝑇𝑥 ) ∈ ℋ → ( 0hop ‘ ( 𝑇𝑥 ) ) = 0 )
4 2 3 syl ( 𝑥 ∈ ℋ → ( 0hop ‘ ( 𝑇𝑥 ) ) = 0 )
5 ho0f 0hop : ℋ ⟶ ℋ
6 5 1 hocoi ( 𝑥 ∈ ℋ → ( ( 0hop𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ ( 𝑇𝑥 ) ) )
7 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
8 4 6 7 3eqtr4d ( 𝑥 ∈ ℋ → ( ( 0hop𝑇 ) ‘ 𝑥 ) = ( 0hop𝑥 ) )
9 8 rgen 𝑥 ∈ ℋ ( ( 0hop𝑇 ) ‘ 𝑥 ) = ( 0hop𝑥 )
10 5 1 hocofi ( 0hop𝑇 ) : ℋ ⟶ ℋ
11 10 5 hoeqi ( ∀ 𝑥 ∈ ℋ ( ( 0hop𝑇 ) ‘ 𝑥 ) = ( 0hop𝑥 ) ↔ ( 0hop𝑇 ) = 0hop )
12 9 11 mpbi ( 0hop𝑇 ) = 0hop