Step |
Hyp |
Ref |
Expression |
1 |
|
hoaddid1.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
2 |
1
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
3 |
|
ho0val |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( 0hop ‘ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ) |
4 |
2 3
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ) |
5 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
6 |
5 1
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
7 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
8 |
4 6 7
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
9 |
8
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) |
10 |
5 1
|
hocofi |
⊢ ( 0hop ∘ 𝑇 ) : ℋ ⟶ ℋ |
11 |
10 5
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ↔ ( 0hop ∘ 𝑇 ) = 0hop ) |
12 |
9 11
|
mpbi |
⊢ ( 0hop ∘ 𝑇 ) = 0hop |