Metamath Proof Explorer


Theorem ho0f

Description: Functionality of the zero Hilbert space operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion ho0f 0hop : ℋ ⟶ ℋ

Proof

Step Hyp Ref Expression
1 h0elch 0C
2 1 pjfi ( proj ‘ 0 ) : ℋ ⟶ ℋ
3 df-h0op 0hop = ( proj ‘ 0 )
4 3 feq1i ( 0hop : ℋ ⟶ ℋ ↔ ( proj ‘ 0 ) : ℋ ⟶ ℋ )
5 2 4 mpbir 0hop : ℋ ⟶ ℋ