Metamath Proof Explorer


Theorem ho0sub

Description: Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion ho0sub ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆op 𝑇 ) = ( 𝑆 +op ( 0hopop 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( 𝑆op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) )
2 oveq1 ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( 𝑆 +op ( 0hopop 𝑇 ) ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op ( 0hopop 𝑇 ) ) )
3 1 2 eqeq12d ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( ( 𝑆op 𝑇 ) = ( 𝑆 +op ( 0hopop 𝑇 ) ) ↔ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op ( 0hopop 𝑇 ) ) ) )
4 oveq2 ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) )
5 oveq2 ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( 0hopop 𝑇 ) = ( 0hopop if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) )
6 5 oveq2d ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op ( 0hopop 𝑇 ) ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op ( 0hopop if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) ) )
7 4 6 eqeq12d ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op ( 0hopop 𝑇 ) ) ↔ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op ( 0hopop if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) ) ) )
8 ho0f 0hop : ℋ ⟶ ℋ
9 8 elimf if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) : ℋ ⟶ ℋ
10 8 elimf if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) : ℋ ⟶ ℋ
11 9 10 ho0subi ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op ( 0hopop if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) )
12 3 7 11 dedth2h ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆op 𝑇 ) = ( 𝑆 +op ( 0hopop 𝑇 ) ) )