Step |
Hyp |
Ref |
Expression |
1 |
|
hodseq.2 |
⊢ 𝑆 : ℋ ⟶ ℋ |
2 |
|
hodseq.3 |
⊢ 𝑇 : ℋ ⟶ ℋ |
3 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
4 |
3 2
|
hosubcli |
⊢ ( 0hop −op 𝑇 ) : ℋ ⟶ ℋ |
5 |
2 1 4
|
hoadd12i |
⊢ ( 𝑇 +op ( 𝑆 +op ( 0hop −op 𝑇 ) ) ) = ( 𝑆 +op ( 𝑇 +op ( 0hop −op 𝑇 ) ) ) |
6 |
2 3
|
hodseqi |
⊢ ( 𝑇 +op ( 0hop −op 𝑇 ) ) = 0hop |
7 |
6
|
oveq2i |
⊢ ( 𝑆 +op ( 𝑇 +op ( 0hop −op 𝑇 ) ) ) = ( 𝑆 +op 0hop ) |
8 |
1
|
hoaddid1i |
⊢ ( 𝑆 +op 0hop ) = 𝑆 |
9 |
5 7 8
|
3eqtri |
⊢ ( 𝑇 +op ( 𝑆 +op ( 0hop −op 𝑇 ) ) ) = 𝑆 |
10 |
1 4
|
hoaddcli |
⊢ ( 𝑆 +op ( 0hop −op 𝑇 ) ) : ℋ ⟶ ℋ |
11 |
1 2 10
|
hodsi |
⊢ ( ( 𝑆 −op 𝑇 ) = ( 𝑆 +op ( 0hop −op 𝑇 ) ) ↔ ( 𝑇 +op ( 𝑆 +op ( 0hop −op 𝑇 ) ) ) = 𝑆 ) |
12 |
9 11
|
mpbir |
⊢ ( 𝑆 −op 𝑇 ) = ( 𝑆 +op ( 0hop −op 𝑇 ) ) |