| Step | Hyp | Ref | Expression | 
						
							| 1 |  | choc1 | ⊢ ( ⊥ ‘  ℋ )  =  0ℋ | 
						
							| 2 | 1 | fveq2i | ⊢ ( projℎ ‘ ( ⊥ ‘  ℋ ) )  =  ( projℎ ‘ 0ℋ ) | 
						
							| 3 |  | df-h0op | ⊢  0hop   =  ( projℎ ‘ 0ℋ ) | 
						
							| 4 | 2 3 | eqtr4i | ⊢ ( projℎ ‘ ( ⊥ ‘  ℋ ) )  =   0hop | 
						
							| 5 | 4 | fveq1i | ⊢ ( ( projℎ ‘ ( ⊥ ‘  ℋ ) ) ‘ 𝐴 )  =  (  0hop  ‘ 𝐴 ) | 
						
							| 6 |  | helch | ⊢  ℋ  ∈   Cℋ | 
						
							| 7 |  | pjo | ⊢ ( (  ℋ  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ ( ⊥ ‘  ℋ ) ) ‘ 𝐴 )  =  ( ( ( projℎ ‘  ℋ ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘  ℋ ) ‘ 𝐴 ) ) ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( 𝐴  ∈   ℋ  →  ( ( projℎ ‘ ( ⊥ ‘  ℋ ) ) ‘ 𝐴 )  =  ( ( ( projℎ ‘  ℋ ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘  ℋ ) ‘ 𝐴 ) ) ) | 
						
							| 9 | 5 8 | eqtr3id | ⊢ ( 𝐴  ∈   ℋ  →  (  0hop  ‘ 𝐴 )  =  ( ( ( projℎ ‘  ℋ ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘  ℋ ) ‘ 𝐴 ) ) ) | 
						
							| 10 | 6 | pjhcli | ⊢ ( 𝐴  ∈   ℋ  →  ( ( projℎ ‘  ℋ ) ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 11 |  | hvsubid | ⊢ ( ( ( projℎ ‘  ℋ ) ‘ 𝐴 )  ∈   ℋ  →  ( ( ( projℎ ‘  ℋ ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘  ℋ ) ‘ 𝐴 ) )  =  0ℎ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐴  ∈   ℋ  →  ( ( ( projℎ ‘  ℋ ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘  ℋ ) ‘ 𝐴 ) )  =  0ℎ ) | 
						
							| 13 | 9 12 | eqtrd | ⊢ ( 𝐴  ∈   ℋ  →  (  0hop  ‘ 𝐴 )  =  0ℎ ) |