Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hods.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
hods.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | ||
hods.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
Assertion | ho2coi | ⊢ ( 𝐴 ∈ ℋ → ( ( ( 𝑅 ∘ 𝑆 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
2 | hods.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
3 | hods.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
4 | 1 2 | hocofi | ⊢ ( 𝑅 ∘ 𝑆 ) : ℋ ⟶ ℋ |
5 | 4 3 | hocoi | ⊢ ( 𝐴 ∈ ℋ → ( ( ( 𝑅 ∘ 𝑆 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( ( 𝑅 ∘ 𝑆 ) ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
6 | 3 | ffvelrni | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
7 | 1 2 | hocoi | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( ( 𝑅 ∘ 𝑆 ) ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑅 ∘ 𝑆 ) ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
9 | 5 8 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( ( ( 𝑅 ∘ 𝑆 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |