Metamath Proof Explorer


Theorem ho2coi

Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 𝑅 : ℋ ⟶ ℋ
hods.2 𝑆 : ℋ ⟶ ℋ
hods.3 𝑇 : ℋ ⟶ ℋ
Assertion ho2coi ( 𝐴 ∈ ℋ → ( ( ( 𝑅𝑆 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 hods.1 𝑅 : ℋ ⟶ ℋ
2 hods.2 𝑆 : ℋ ⟶ ℋ
3 hods.3 𝑇 : ℋ ⟶ ℋ
4 1 2 hocofi ( 𝑅𝑆 ) : ℋ ⟶ ℋ
5 4 3 hocoi ( 𝐴 ∈ ℋ → ( ( ( 𝑅𝑆 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( ( 𝑅𝑆 ) ‘ ( 𝑇𝐴 ) ) )
6 3 ffvelrni ( 𝐴 ∈ ℋ → ( 𝑇𝐴 ) ∈ ℋ )
7 1 2 hocoi ( ( 𝑇𝐴 ) ∈ ℋ → ( ( 𝑅𝑆 ) ‘ ( 𝑇𝐴 ) ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇𝐴 ) ) ) )
8 6 7 syl ( 𝐴 ∈ ℋ → ( ( 𝑅𝑆 ) ‘ ( 𝑇𝐴 ) ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇𝐴 ) ) ) )
9 5 8 eqtrd ( 𝐴 ∈ ℋ → ( ( ( 𝑅𝑆 ) ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑅 ‘ ( 𝑆 ‘ ( 𝑇𝐴 ) ) ) )