Metamath Proof Explorer


Theorem hoadd12i

Description: Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 𝑅 : ℋ ⟶ ℋ
hods.2 𝑆 : ℋ ⟶ ℋ
hods.3 𝑇 : ℋ ⟶ ℋ
Assertion hoadd12i ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) = ( 𝑆 +op ( 𝑅 +op 𝑇 ) )

Proof

Step Hyp Ref Expression
1 hods.1 𝑅 : ℋ ⟶ ℋ
2 hods.2 𝑆 : ℋ ⟶ ℋ
3 hods.3 𝑇 : ℋ ⟶ ℋ
4 1 2 hoaddcomi ( 𝑅 +op 𝑆 ) = ( 𝑆 +op 𝑅 )
5 4 oveq1i ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( ( 𝑆 +op 𝑅 ) +op 𝑇 )
6 1 2 3 hoaddassi ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( 𝑅 +op ( 𝑆 +op 𝑇 ) )
7 2 1 3 hoaddassi ( ( 𝑆 +op 𝑅 ) +op 𝑇 ) = ( 𝑆 +op ( 𝑅 +op 𝑇 ) )
8 5 6 7 3eqtr3i ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) = ( 𝑆 +op ( 𝑅 +op 𝑇 ) )