Step |
Hyp |
Ref |
Expression |
1 |
|
hoaddcom |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) |
3 |
2
|
oveq2d |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) = ( 𝑅 +op ( 𝑇 +op 𝑆 ) ) ) |
4 |
|
hoaddass |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ) |
5 |
|
hoaddass |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑇 ) +op 𝑆 ) = ( 𝑅 +op ( 𝑇 +op 𝑆 ) ) ) |
6 |
5
|
3com23 |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑇 ) +op 𝑆 ) = ( 𝑅 +op ( 𝑇 +op 𝑆 ) ) ) |
7 |
3 4 6
|
3eqtr4d |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( ( 𝑅 +op 𝑇 ) +op 𝑆 ) ) |