Metamath Proof Explorer


Theorem hoaddcli

Description: Mapping of sum of Hilbert space operators. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1 𝑆 : ℋ ⟶ ℋ
hoeq.2 𝑇 : ℋ ⟶ ℋ
Assertion hoaddcli ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ

Proof

Step Hyp Ref Expression
1 hoeq.1 𝑆 : ℋ ⟶ ℋ
2 hoeq.2 𝑇 : ℋ ⟶ ℋ
3 hoaddcl ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ )
4 1 2 3 mp2an ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ