| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoeq.1 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
						
							| 2 |  | hoeq.2 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 3 | 1 | ffvelcdmi | ⊢ ( 𝑥  ∈   ℋ  →  ( 𝑆 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 4 | 2 | ffvelcdmi | ⊢ ( 𝑥  ∈   ℋ  →  ( 𝑇 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 5 |  | ax-hvcom | ⊢ ( ( ( 𝑆 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑇 ‘ 𝑥 )  ∈   ℋ )  →  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) )  =  ( ( 𝑇 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 7 |  | hosval | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 8 | 1 2 7 | mp3an12 | ⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 9 |  | hosval | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑇  +op  𝑆 ) ‘ 𝑥 )  =  ( ( 𝑇 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 10 | 2 1 9 | mp3an12 | ⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑇  +op  𝑆 ) ‘ 𝑥 )  =  ( ( 𝑇 ‘ 𝑥 )  +ℎ  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 11 | 6 8 10 | 3eqtr4d | ⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( ( 𝑇  +op  𝑆 ) ‘ 𝑥 ) ) | 
						
							| 12 | 11 | rgen | ⊢ ∀ 𝑥  ∈   ℋ ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( ( 𝑇  +op  𝑆 ) ‘ 𝑥 ) | 
						
							| 13 | 1 2 | hoaddcli | ⊢ ( 𝑆  +op  𝑇 ) :  ℋ ⟶  ℋ | 
						
							| 14 | 2 1 | hoaddcli | ⊢ ( 𝑇  +op  𝑆 ) :  ℋ ⟶  ℋ | 
						
							| 15 | 13 14 | hoeqi | ⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( ( 𝑇  +op  𝑆 ) ‘ 𝑥 )  ↔  ( 𝑆  +op  𝑇 )  =  ( 𝑇  +op  𝑆 ) ) | 
						
							| 16 | 12 15 | mpbi | ⊢ ( 𝑆  +op  𝑇 )  =  ( 𝑇  +op  𝑆 ) |