Metamath Proof Explorer


Theorem hoaddid1

Description: Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hoaddid1 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 +op 0hop ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( 𝑇 +op 0hop ) = ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) +op 0hop ) )
2 id ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) )
3 1 2 eqeq12d ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( ( 𝑇 +op 0hop ) = 𝑇 ↔ ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) +op 0hop ) = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) )
4 ho0f 0hop : ℋ ⟶ ℋ
5 4 elimf if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) : ℋ ⟶ ℋ
6 5 hoaddid1i ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) +op 0hop ) = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop )
7 3 6 dedth ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 +op 0hop ) = 𝑇 )