Metamath Proof Explorer
Description: Associativity of sum and difference of Hilbert space operators.
(Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hoaddsubass.1 |
⊢ 𝑅 : ℋ ⟶ ℋ |
|
|
hoaddsubass.2 |
⊢ 𝑆 : ℋ ⟶ ℋ |
|
|
hoaddsubass.3 |
⊢ 𝑇 : ℋ ⟶ ℋ |
|
Assertion |
hoaddsubassi |
⊢ ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( 𝑅 +op ( 𝑆 −op 𝑇 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hoaddsubass.1 |
⊢ 𝑅 : ℋ ⟶ ℋ |
2 |
|
hoaddsubass.2 |
⊢ 𝑆 : ℋ ⟶ ℋ |
3 |
|
hoaddsubass.3 |
⊢ 𝑇 : ℋ ⟶ ℋ |
4 |
|
hoaddsubass |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( 𝑅 +op ( 𝑆 −op 𝑇 ) ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( 𝑅 +op ( 𝑆 −op 𝑇 ) ) |