Metamath Proof Explorer


Theorem hoaddsubassi

Description: Associativity of sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hoaddsubass.1 𝑅 : ℋ ⟶ ℋ
hoaddsubass.2 𝑆 : ℋ ⟶ ℋ
hoaddsubass.3 𝑇 : ℋ ⟶ ℋ
Assertion hoaddsubassi ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( 𝑅 +op ( 𝑆op 𝑇 ) )

Proof

Step Hyp Ref Expression
1 hoaddsubass.1 𝑅 : ℋ ⟶ ℋ
2 hoaddsubass.2 𝑆 : ℋ ⟶ ℋ
3 hoaddsubass.3 𝑇 : ℋ ⟶ ℋ
4 hoaddsubass ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( 𝑅 +op ( 𝑆op 𝑇 ) ) )
5 1 2 3 4 mp3an ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( 𝑅 +op ( 𝑆op 𝑇 ) )