Metamath Proof Explorer
		
		
		
		Description:  Associativity of sum and difference of Hilbert space operators.
       (Contributed by NM, 27-Aug-2004)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hoaddsubass.1 | ⊢ 𝑅 :  ℋ ⟶  ℋ | 
					
						|  |  | hoaddsubass.2 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
					
						|  |  | hoaddsubass.3 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
				
					|  | Assertion | hoaddsubassi | ⊢  ( ( 𝑅  +op  𝑆 )  −op  𝑇 )  =  ( 𝑅  +op  ( 𝑆  −op  𝑇 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoaddsubass.1 | ⊢ 𝑅 :  ℋ ⟶  ℋ | 
						
							| 2 |  | hoaddsubass.2 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
						
							| 3 |  | hoaddsubass.3 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 4 |  | hoaddsubass | ⊢ ( ( 𝑅 :  ℋ ⟶  ℋ  ∧  𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ( 𝑅  +op  𝑆 )  −op  𝑇 )  =  ( 𝑅  +op  ( 𝑆  −op  𝑇 ) ) ) | 
						
							| 5 | 1 2 3 4 | mp3an | ⊢ ( ( 𝑅  +op  𝑆 )  −op  𝑇 )  =  ( 𝑅  +op  ( 𝑆  −op  𝑇 ) ) |