Metamath Proof Explorer


Theorem hoaddsubi

Description: Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hoaddsubass.1 𝑅 : ℋ ⟶ ℋ
hoaddsubass.2 𝑆 : ℋ ⟶ ℋ
hoaddsubass.3 𝑇 : ℋ ⟶ ℋ
Assertion hoaddsubi ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( ( 𝑅op 𝑇 ) +op 𝑆 )

Proof

Step Hyp Ref Expression
1 hoaddsubass.1 𝑅 : ℋ ⟶ ℋ
2 hoaddsubass.2 𝑆 : ℋ ⟶ ℋ
3 hoaddsubass.3 𝑇 : ℋ ⟶ ℋ
4 1 2 hoaddcomi ( 𝑅 +op 𝑆 ) = ( 𝑆 +op 𝑅 )
5 4 oveq1i ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( ( 𝑆 +op 𝑅 ) −op 𝑇 )
6 2 1 3 hoaddsubassi ( ( 𝑆 +op 𝑅 ) −op 𝑇 ) = ( 𝑆 +op ( 𝑅op 𝑇 ) )
7 1 3 hosubcli ( 𝑅op 𝑇 ) : ℋ ⟶ ℋ
8 2 7 hoaddcomi ( 𝑆 +op ( 𝑅op 𝑇 ) ) = ( ( 𝑅op 𝑇 ) +op 𝑆 )
9 5 6 8 3eqtri ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( ( 𝑅op 𝑇 ) +op 𝑆 )