Description: Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hoaddsubass.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
hoaddsubass.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | ||
hoaddsubass.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
Assertion | hoaddsubi | ⊢ ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( ( 𝑅 −op 𝑇 ) +op 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoaddsubass.1 | ⊢ 𝑅 : ℋ ⟶ ℋ | |
2 | hoaddsubass.2 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
3 | hoaddsubass.3 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
4 | 1 2 | hoaddcomi | ⊢ ( 𝑅 +op 𝑆 ) = ( 𝑆 +op 𝑅 ) |
5 | 4 | oveq1i | ⊢ ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( ( 𝑆 +op 𝑅 ) −op 𝑇 ) |
6 | 2 1 3 | hoaddsubassi | ⊢ ( ( 𝑆 +op 𝑅 ) −op 𝑇 ) = ( 𝑆 +op ( 𝑅 −op 𝑇 ) ) |
7 | 1 3 | hosubcli | ⊢ ( 𝑅 −op 𝑇 ) : ℋ ⟶ ℋ |
8 | 2 7 | hoaddcomi | ⊢ ( 𝑆 +op ( 𝑅 −op 𝑇 ) ) = ( ( 𝑅 −op 𝑇 ) +op 𝑆 ) |
9 | 5 6 8 | 3eqtri | ⊢ ( ( 𝑅 +op 𝑆 ) −op 𝑇 ) = ( ( 𝑅 −op 𝑇 ) +op 𝑆 ) |