Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
Assertion | hococli | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
2 | hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
3 | 1 2 | hocoi | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
4 | 2 | ffvelrni | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
5 | 1 | ffvelrni | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) |
6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℋ → ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) |
7 | 3 6 | eqeltrd | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |