Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
| Assertion | hococli | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| 2 | hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 3 | 1 2 | hocoi | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) | 
| 4 | 2 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) | 
| 5 | 1 | ffvelcdmi | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) | 
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℋ → ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) | 
| 7 | 3 6 | eqeltrd | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |