Metamath Proof Explorer


Theorem hococli

Description: Closure of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1 𝑆 : ℋ ⟶ ℋ
hoeq.2 𝑇 : ℋ ⟶ ℋ
Assertion hococli ( 𝐴 ∈ ℋ → ( ( 𝑆𝑇 ) ‘ 𝐴 ) ∈ ℋ )

Proof

Step Hyp Ref Expression
1 hoeq.1 𝑆 : ℋ ⟶ ℋ
2 hoeq.2 𝑇 : ℋ ⟶ ℋ
3 1 2 hocoi ( 𝐴 ∈ ℋ → ( ( 𝑆𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇𝐴 ) ) )
4 2 ffvelrni ( 𝐴 ∈ ℋ → ( 𝑇𝐴 ) ∈ ℋ )
5 1 ffvelrni ( ( 𝑇𝐴 ) ∈ ℋ → ( 𝑆 ‘ ( 𝑇𝐴 ) ) ∈ ℋ )
6 4 5 syl ( 𝐴 ∈ ℋ → ( 𝑆 ‘ ( 𝑇𝐴 ) ) ∈ ℋ )
7 3 6 eqeltrd ( 𝐴 ∈ ℋ → ( ( 𝑆𝑇 ) ‘ 𝐴 ) ∈ ℋ )