Metamath Proof Explorer


Theorem hocofi

Description: Mapping of composition of Hilbert space operators. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hoeq.1 𝑆 : ℋ ⟶ ℋ
hoeq.2 𝑇 : ℋ ⟶ ℋ
Assertion hocofi ( 𝑆𝑇 ) : ℋ ⟶ ℋ

Proof

Step Hyp Ref Expression
1 hoeq.1 𝑆 : ℋ ⟶ ℋ
2 hoeq.2 𝑇 : ℋ ⟶ ℋ
3 fco ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆𝑇 ) : ℋ ⟶ ℋ )
4 1 2 3 mp2an ( 𝑆𝑇 ) : ℋ ⟶ ℋ