Metamath Proof Explorer
Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hoeq.1 |
⊢ 𝑆 : ℋ ⟶ ℋ |
|
|
hoeq.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
|
Assertion |
hocoi |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hoeq.1 |
⊢ 𝑆 : ℋ ⟶ ℋ |
2 |
|
hoeq.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
3 |
|
fvco3 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝐴 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |