Metamath Proof Explorer
		
		
		
		Description:  Composition of Hilbert space operators.  (Contributed by NM, 12-Nov-2000)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hoeq.1 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
					
						|  |  | hoeq.2 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
				
					|  | Assertion | hocoi | ⊢  ( 𝐴  ∈   ℋ  →  ( ( 𝑆  ∘  𝑇 ) ‘ 𝐴 )  =  ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoeq.1 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
						
							| 2 |  | hoeq.2 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 3 |  | fvco3 | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑆  ∘  𝑇 ) ‘ 𝐴 )  =  ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝑆  ∘  𝑇 ) ‘ 𝐴 )  =  ( 𝑆 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |