Step |
Hyp |
Ref |
Expression |
1 |
|
hoddi.1 |
⊢ 𝑅 ∈ LinOp |
2 |
|
hoddi.2 |
⊢ 𝑆 : ℋ ⟶ ℋ |
3 |
|
hoddi.3 |
⊢ 𝑇 : ℋ ⟶ ℋ |
4 |
2
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
5 |
3
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
6 |
1
|
lnopsubi |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑅 ‘ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) −ℎ ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) −ℎ ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
8 |
|
hodval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
9 |
2 3 8
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) ) = ( 𝑅 ‘ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
11 |
1
|
lnopfi |
⊢ 𝑅 : ℋ ⟶ ℋ |
12 |
11 2
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
13 |
11 3
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝑅 ‘ ( 𝑆 ‘ 𝑥 ) ) −ℎ ( 𝑅 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
15 |
7 10 14
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) ) = ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
16 |
2 3
|
hosubcli |
⊢ ( 𝑆 −op 𝑇 ) : ℋ ⟶ ℋ |
17 |
11 16
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( 𝑅 ‘ ( ( 𝑆 −op 𝑇 ) ‘ 𝑥 ) ) ) |
18 |
11 2
|
hocofi |
⊢ ( 𝑅 ∘ 𝑆 ) : ℋ ⟶ ℋ |
19 |
11 3
|
hocofi |
⊢ ( 𝑅 ∘ 𝑇 ) : ℋ ⟶ ℋ |
20 |
|
hodval |
⊢ ( ( ( 𝑅 ∘ 𝑆 ) : ℋ ⟶ ℋ ∧ ( 𝑅 ∘ 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
21 |
18 19 20
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) ‘ 𝑥 ) −ℎ ( ( 𝑅 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
22 |
15 17 21
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) ) |
23 |
22
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) |
24 |
11 16
|
hocofi |
⊢ ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) : ℋ ⟶ ℋ |
25 |
18 19
|
hosubcli |
⊢ ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) : ℋ ⟶ ℋ |
26 |
24 25
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) ‘ 𝑥 ) = ( ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ‘ 𝑥 ) ↔ ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) ) |
27 |
23 26
|
mpbi |
⊢ ( 𝑅 ∘ ( 𝑆 −op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) −op ( 𝑅 ∘ 𝑇 ) ) |