Metamath Proof Explorer


Theorem hodid

Description: Difference of a Hilbert space operator from itself. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hodid ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 𝑇 ) = 0hop )

Proof

Step Hyp Ref Expression
1 id ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) )
2 1 1 oveq12d ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( 𝑇op 𝑇 ) = ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) )
3 2 eqeq1d ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( ( 𝑇op 𝑇 ) = 0hop ↔ ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) = 0hop ) )
4 ho0f 0hop : ℋ ⟶ ℋ
5 4 elimf if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) : ℋ ⟶ ℋ
6 5 hodidi ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) = 0hop
7 3 6 dedth ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 𝑇 ) = 0hop )