Step |
Hyp |
Ref |
Expression |
1 |
|
hods.1 |
⊢ 𝑅 : ℋ ⟶ ℋ |
2 |
|
hods.2 |
⊢ 𝑆 : ℋ ⟶ ℋ |
3 |
|
hods.3 |
⊢ 𝑇 : ℋ ⟶ ℋ |
4 |
1
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ 𝑥 ) ∈ ℋ ) |
5 |
2
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
6 |
3
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
7 |
|
hvsubadd |
⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
9 |
|
hodval |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
10 |
1 2 9
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) ) |
12 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
13 |
2 3 12
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
15 |
8 11 14
|
3bitr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) ) |
16 |
15
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) |
17 |
1 2
|
hosubcli |
⊢ ( 𝑅 −op 𝑆 ) : ℋ ⟶ ℋ |
18 |
17 3
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 𝑅 −op 𝑆 ) = 𝑇 ) |
19 |
2 3
|
hoaddcli |
⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
20 |
19 1
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ↔ ( 𝑆 +op 𝑇 ) = 𝑅 ) |
21 |
16 18 20
|
3bitr3i |
⊢ ( ( 𝑅 −op 𝑆 ) = 𝑇 ↔ ( 𝑆 +op 𝑇 ) = 𝑅 ) |