| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hods.1 | ⊢ 𝑅 :  ℋ ⟶  ℋ | 
						
							| 2 |  | hods.2 | ⊢ 𝑆 :  ℋ ⟶  ℋ | 
						
							| 3 |  | hods.3 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 4 | 1 | ffvelcdmi | ⊢ ( 𝑥  ∈   ℋ  →  ( 𝑅 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 5 | 2 | ffvelcdmi | ⊢ ( 𝑥  ∈   ℋ  →  ( 𝑆 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 6 | 3 | ffvelcdmi | ⊢ ( 𝑥  ∈   ℋ  →  ( 𝑇 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 7 |  | hvsubadd | ⊢ ( ( ( 𝑅 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑆 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑇 ‘ 𝑥 )  ∈   ℋ )  →  ( ( ( 𝑅 ‘ 𝑥 )  −ℎ  ( 𝑆 ‘ 𝑥 ) )  =  ( 𝑇 ‘ 𝑥 )  ↔  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) )  =  ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝑥  ∈   ℋ  →  ( ( ( 𝑅 ‘ 𝑥 )  −ℎ  ( 𝑆 ‘ 𝑥 ) )  =  ( 𝑇 ‘ 𝑥 )  ↔  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) )  =  ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 9 |  | hodval | ⊢ ( ( 𝑅 :  ℋ ⟶  ℋ  ∧  𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑅  −op  𝑆 ) ‘ 𝑥 )  =  ( ( 𝑅 ‘ 𝑥 )  −ℎ  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 10 | 1 2 9 | mp3an12 | ⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑅  −op  𝑆 ) ‘ 𝑥 )  =  ( ( 𝑅 ‘ 𝑥 )  −ℎ  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑥  ∈   ℋ  →  ( ( ( 𝑅  −op  𝑆 ) ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 )  ↔  ( ( 𝑅 ‘ 𝑥 )  −ℎ  ( 𝑆 ‘ 𝑥 ) )  =  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 12 |  | hosval | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 13 | 2 3 12 | mp3an12 | ⊢ ( 𝑥  ∈   ℋ  →  ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑥  ∈   ℋ  →  ( ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( 𝑅 ‘ 𝑥 )  ↔  ( ( 𝑆 ‘ 𝑥 )  +ℎ  ( 𝑇 ‘ 𝑥 ) )  =  ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 15 | 8 11 14 | 3bitr4d | ⊢ ( 𝑥  ∈   ℋ  →  ( ( ( 𝑅  −op  𝑆 ) ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 )  ↔  ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 16 | 15 | ralbiia | ⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑅  −op  𝑆 ) ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈   ℋ ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 17 | 1 2 | hosubcli | ⊢ ( 𝑅  −op  𝑆 ) :  ℋ ⟶  ℋ | 
						
							| 18 | 17 3 | hoeqi | ⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑅  −op  𝑆 ) ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 )  ↔  ( 𝑅  −op  𝑆 )  =  𝑇 ) | 
						
							| 19 | 2 3 | hoaddcli | ⊢ ( 𝑆  +op  𝑇 ) :  ℋ ⟶  ℋ | 
						
							| 20 | 19 1 | hoeqi | ⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑆  +op  𝑇 ) ‘ 𝑥 )  =  ( 𝑅 ‘ 𝑥 )  ↔  ( 𝑆  +op  𝑇 )  =  𝑅 ) | 
						
							| 21 | 16 18 20 | 3bitr3i | ⊢ ( ( 𝑅  −op  𝑆 )  =  𝑇  ↔  ( 𝑆  +op  𝑇 )  =  𝑅 ) |