Step |
Hyp |
Ref |
Expression |
1 |
|
hodmval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 −op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
2 |
1
|
fveq1d |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐴 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝐴 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐴 ) ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
7 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ V |
8 |
5 6 7
|
fvmpt |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
9 |
2 8
|
sylan9eq |
⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
10 |
9
|
3impa |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 −op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) |