Metamath Proof Explorer


Theorem hoeq

Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoeq ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( 𝑈𝑥 ) ↔ 𝑇 = 𝑈 ) )

Proof

Step Hyp Ref Expression
1 ffn ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ )
2 ffn ( 𝑈 : ℋ ⟶ ℋ → 𝑈 Fn ℋ )
3 eqfnfv ( ( 𝑇 Fn ℋ ∧ 𝑈 Fn ℋ ) → ( 𝑇 = 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( 𝑈𝑥 ) ) )
4 3 bicomd ( ( 𝑇 Fn ℋ ∧ 𝑈 Fn ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( 𝑈𝑥 ) ↔ 𝑇 = 𝑈 ) )
5 1 2 4 syl2an ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇𝑥 ) = ( 𝑈𝑥 ) ↔ 𝑇 = 𝑈 ) )