Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hoeq | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑥 ) ↔ 𝑇 = 𝑈 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) | |
2 | ffn | ⊢ ( 𝑈 : ℋ ⟶ ℋ → 𝑈 Fn ℋ ) | |
3 | eqfnfv | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝑈 Fn ℋ ) → ( 𝑇 = 𝑈 ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑥 ) ) ) | |
4 | 3 | bicomd | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝑈 Fn ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑥 ) ↔ 𝑇 = 𝑈 ) ) |
5 | 1 2 4 | syl2an | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑥 ) ↔ 𝑇 = 𝑈 ) ) |