| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffvelcdm | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑆 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 2 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑇 ‘ 𝑥 )  ∈   ℋ ) | 
						
							| 3 |  | hial2eq | ⊢ ( ( ( 𝑆 ‘ 𝑥 )  ∈   ℋ  ∧  ( 𝑇 ‘ 𝑥 )  ∈   ℋ )  →  ( ∀ 𝑦  ∈   ℋ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( 𝑆 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ )  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑥  ∈   ℋ ) )  →  ( ∀ 𝑦  ∈   ℋ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( 𝑆 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 5 | 4 | anandirs | ⊢ ( ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ∀ 𝑦  ∈   ℋ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ( 𝑆 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 6 | 5 | ralbidva | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ( 𝑆 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 7 |  | ffn | ⊢ ( 𝑆 :  ℋ ⟶  ℋ  →  𝑆  Fn   ℋ ) | 
						
							| 8 |  | ffn | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  𝑇  Fn   ℋ ) | 
						
							| 9 |  | eqfnfv | ⊢ ( ( 𝑆  Fn   ℋ  ∧  𝑇  Fn   ℋ )  →  ( 𝑆  =  𝑇  ↔  ∀ 𝑥  ∈   ℋ ( 𝑆 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝑆  =  𝑇  ↔  ∀ 𝑥  ∈   ℋ ( 𝑆 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 11 | 6 10 | bitr4d | ⊢ ( ( 𝑆 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑆 ‘ 𝑥 )  ·ih  𝑦 )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑦 )  ↔  𝑆  =  𝑇 ) ) |