Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
2 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
3 |
|
hial2eq |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
5 |
4
|
anandirs |
⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
6 |
5
|
ralbidva |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
7 |
|
ffn |
⊢ ( 𝑆 : ℋ ⟶ ℋ → 𝑆 Fn ℋ ) |
8 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) |
9 |
|
eqfnfv |
⊢ ( ( 𝑆 Fn ℋ ∧ 𝑇 Fn ℋ ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) ) |
11 |
6 10
|
bitr4d |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ 𝑆 = 𝑇 ) ) |