Metamath Proof Explorer


Theorem hoeq2

Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of Beran p. 95. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion hoeq2 ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ 𝑆 = 𝑇 ) )

Proof

Step Hyp Ref Expression
1 ralcom ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
2 1 a1i ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ) )
3 ffvelrn ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑆𝑦 ) ∈ ℋ )
4 ffvelrn ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇𝑦 ) ∈ ℋ )
5 hial2eq2 ( ( ( 𝑆𝑦 ) ∈ ℋ ∧ ( 𝑇𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
6 hial2eq ( ( ( 𝑆𝑦 ) ∈ ℋ ∧ ( 𝑇𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑦 ) ·ih 𝑥 ) = ( ( 𝑇𝑦 ) ·ih 𝑥 ) ↔ ( 𝑆𝑦 ) = ( 𝑇𝑦 ) ) )
7 5 6 bitr4d ( ( ( 𝑆𝑦 ) ∈ ℋ ∧ ( 𝑇𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑦 ) ·ih 𝑥 ) = ( ( 𝑇𝑦 ) ·ih 𝑥 ) ) )
8 3 4 7 syl2an ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑦 ) ·ih 𝑥 ) = ( ( 𝑇𝑦 ) ·ih 𝑥 ) ) )
9 8 anandirs ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑦 ) ·ih 𝑥 ) = ( ( 𝑇𝑦 ) ·ih 𝑥 ) ) )
10 9 ralbidva ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑦 ) ·ih 𝑥 ) = ( ( 𝑇𝑦 ) ·ih 𝑥 ) ) )
11 hoeq1 ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑦 ) ·ih 𝑥 ) = ( ( 𝑇𝑦 ) ·ih 𝑥 ) ↔ 𝑆 = 𝑇 ) )
12 2 10 11 3bitrd ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ↔ 𝑆 = 𝑇 ) )