| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 3 |
|
ffvelcdm |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑆 ‘ 𝑦 ) ∈ ℋ ) |
| 4 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 5 |
|
hial2eq2 |
⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 6 |
|
hial2eq |
⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 7 |
5 6
|
bitr4d |
⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 8 |
3 4 7
|
syl2an |
⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 9 |
8
|
anandirs |
⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 10 |
9
|
ralbidva |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 11 |
|
hoeq1 |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ‘ 𝑦 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ↔ 𝑆 = 𝑇 ) ) |
| 12 |
2 10 11
|
3bitrd |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |