Metamath Proof Explorer
Description: Equality of Hilbert space operators. (Contributed by NM, 14-Nov-2000)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hoeq.1 |
⊢ 𝑆 : ℋ ⟶ ℋ |
|
|
hoeq.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
|
Assertion |
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ 𝑆 = 𝑇 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hoeq.1 |
⊢ 𝑆 : ℋ ⟶ ℋ |
2 |
|
hoeq.2 |
⊢ 𝑇 : ℋ ⟶ ℋ |
3 |
|
hoeq |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ 𝑆 = 𝑇 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ∀ 𝑥 ∈ ℋ ( 𝑆 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ 𝑆 = 𝑇 ) |