Metamath Proof Explorer


Theorem hoico1

Description: Composition with the Hilbert space identity operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoico1 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ∘ Iop ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 dfiop2 Iop = ( I ↾ ℋ )
2 1 coeq2i ( 𝑇 ∘ Iop ) = ( 𝑇 ∘ ( I ↾ ℋ ) )
3 fcoi1 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ∘ ( I ↾ ℋ ) ) = 𝑇 )
4 2 3 syl5eq ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ∘ Iop ) = 𝑇 )