Description: Composition with the Hilbert space identity operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoico1 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ∘ Iop ) = 𝑇 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfiop2 | ⊢ Iop = ( I ↾ ℋ ) | |
| 2 | 1 | coeq2i | ⊢ ( 𝑇 ∘ Iop ) = ( 𝑇 ∘ ( I ↾ ℋ ) ) | 
| 3 | fcoi1 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ∘ ( I ↾ ℋ ) ) = 𝑇 ) | |
| 4 | 2 3 | eqtrid | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ∘ Iop ) = 𝑇 ) |