Metamath Proof Explorer


Theorem hoico2

Description: Composition with the Hilbert space identity operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoico2 ( 𝑇 : ℋ ⟶ ℋ → ( Iop𝑇 ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 dfiop2 Iop = ( I ↾ ℋ )
2 1 coeq1i ( Iop𝑇 ) = ( ( I ↾ ℋ ) ∘ 𝑇 )
3 fcoi2 ( 𝑇 : ℋ ⟶ ℋ → ( ( I ↾ ℋ ) ∘ 𝑇 ) = 𝑇 )
4 2 3 syl5eq ( 𝑇 : ℋ ⟶ ℋ → ( Iop𝑇 ) = 𝑇 )