Metamath Proof Explorer


Theorem hoid1i

Description: Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 𝑇 : ℋ ⟶ ℋ
Assertion hoid1i ( 𝑇 ∘ Iop ) = 𝑇

Proof

Step Hyp Ref Expression
1 hoaddid1.1 𝑇 : ℋ ⟶ ℋ
2 df-iop Iop = ( proj ‘ ℋ )
3 2 coeq2i ( 𝑇 ∘ Iop ) = ( 𝑇 ∘ ( proj ‘ ℋ ) )
4 helch ℋ ∈ C
5 4 pjfi ( proj ‘ ℋ ) : ℋ ⟶ ℋ
6 1 5 hocoi ( 𝑥 ∈ ℋ → ( ( 𝑇 ∘ ( proj ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( proj ‘ ℋ ) ‘ 𝑥 ) ) )
7 pjch1 ( 𝑥 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝑥 ) = 𝑥 )
8 7 fveq2d ( 𝑥 ∈ ℋ → ( 𝑇 ‘ ( ( proj ‘ ℋ ) ‘ 𝑥 ) ) = ( 𝑇𝑥 ) )
9 6 8 eqtrd ( 𝑥 ∈ ℋ → ( ( 𝑇 ∘ ( proj ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇𝑥 ) )
10 9 rgen 𝑥 ∈ ℋ ( ( 𝑇 ∘ ( proj ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇𝑥 )
11 1 5 hocofi ( 𝑇 ∘ ( proj ‘ ℋ ) ) : ℋ ⟶ ℋ
12 11 1 hoeqi ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ∘ ( proj ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇𝑥 ) ↔ ( 𝑇 ∘ ( proj ‘ ℋ ) ) = 𝑇 )
13 10 12 mpbi ( 𝑇 ∘ ( proj ‘ ℋ ) ) = 𝑇
14 3 13 eqtri ( 𝑇 ∘ Iop ) = 𝑇