| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoaddrid.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 2 |
|
df-iop |
⊢ Iop = ( projℎ ‘ ℋ ) |
| 3 |
2
|
coeq2i |
⊢ ( 𝑇 ∘ Iop ) = ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) |
| 4 |
|
helch |
⊢ ℋ ∈ Cℋ |
| 5 |
4
|
pjfi |
⊢ ( projℎ ‘ ℋ ) : ℋ ⟶ ℋ |
| 6 |
1 5
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) ) ) |
| 7 |
|
pjch1 |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = 𝑥 ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
| 9 |
6 8
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 10 |
9
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) |
| 11 |
1 5
|
hocofi |
⊢ ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) : ℋ ⟶ ℋ |
| 12 |
11 1
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) = 𝑇 ) |
| 13 |
10 12
|
mpbi |
⊢ ( 𝑇 ∘ ( projℎ ‘ ℋ ) ) = 𝑇 |
| 14 |
3 13
|
eqtri |
⊢ ( 𝑇 ∘ Iop ) = 𝑇 |