Metamath Proof Explorer


Theorem hoid1ri

Description: Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddid1.1 𝑇 : ℋ ⟶ ℋ
Assertion hoid1ri ( Iop𝑇 ) = 𝑇

Proof

Step Hyp Ref Expression
1 hoaddid1.1 𝑇 : ℋ ⟶ ℋ
2 df-iop Iop = ( proj ‘ ℋ )
3 2 coeq1i ( Iop𝑇 ) = ( ( proj ‘ ℋ ) ∘ 𝑇 )
4 helch ℋ ∈ C
5 4 pjfi ( proj ‘ ℋ ) : ℋ ⟶ ℋ
6 5 1 hocoi ( 𝑥 ∈ ℋ → ( ( ( proj ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( ( proj ‘ ℋ ) ‘ ( 𝑇𝑥 ) ) )
7 1 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℋ )
8 pjch1 ( ( 𝑇𝑥 ) ∈ ℋ → ( ( proj ‘ ℋ ) ‘ ( 𝑇𝑥 ) ) = ( 𝑇𝑥 ) )
9 7 8 syl ( 𝑥 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ ( 𝑇𝑥 ) ) = ( 𝑇𝑥 ) )
10 6 9 eqtrd ( 𝑥 ∈ ℋ → ( ( ( proj ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇𝑥 ) )
11 10 rgen 𝑥 ∈ ℋ ( ( ( proj ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇𝑥 )
12 5 1 hocofi ( ( proj ‘ ℋ ) ∘ 𝑇 ) : ℋ ⟶ ℋ
13 12 1 hoeqi ( ∀ 𝑥 ∈ ℋ ( ( ( proj ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇𝑥 ) ↔ ( ( proj ‘ ℋ ) ∘ 𝑇 ) = 𝑇 )
14 11 13 mpbi ( ( proj ‘ ℋ ) ∘ 𝑇 ) = 𝑇
15 3 14 eqtri ( Iop𝑇 ) = 𝑇