| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoaddrid.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 2 |
|
df-iop |
⊢ Iop = ( projℎ ‘ ℋ ) |
| 3 |
2
|
coeq1i |
⊢ ( Iop ∘ 𝑇 ) = ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) |
| 4 |
|
helch |
⊢ ℋ ∈ Cℋ |
| 5 |
4
|
pjfi |
⊢ ( projℎ ‘ ℋ ) : ℋ ⟶ ℋ |
| 6 |
5 1
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( ( projℎ ‘ ℋ ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 |
1
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 8 |
|
pjch1 |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
| 10 |
6 9
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) |
| 12 |
5 1
|
hocofi |
⊢ ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) : ℋ ⟶ ℋ |
| 13 |
12 1
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) = 𝑇 ) |
| 14 |
11 13
|
mpbi |
⊢ ( ( projℎ ‘ ℋ ) ∘ 𝑇 ) = 𝑇 |
| 15 |
3 14
|
eqtri |
⊢ ( Iop ∘ 𝑇 ) = 𝑇 |