| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homahom.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
| 2 |
|
df-br |
⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 4 |
1
|
homarcl |
⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
| 5 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 6 |
1 3
|
homarcl2 |
⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 |
6
|
simpld |
⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 8 |
6
|
simprd |
⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
1 3 4 5 7 8
|
elhoma |
⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) ) |
| 10 |
2 9
|
sylbi |
⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) ) |
| 11 |
10
|
ibi |
⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 12 |
11
|
simpld |
⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → 𝑍 = 〈 𝑋 , 𝑌 〉 ) |