Metamath Proof Explorer


Theorem homa1

Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis homahom.h 𝐻 = ( Homa𝐶 )
Assertion homa1 ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹𝑍 = ⟨ 𝑋 , 𝑌 ⟩ )

Proof

Step Hyp Ref Expression
1 homahom.h 𝐻 = ( Homa𝐶 )
2 df-br ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ⟨ 𝑍 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) )
3 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
4 1 homarcl ( ⟨ 𝑍 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat )
5 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
6 1 3 homarcl2 ( ⟨ 𝑍 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) )
7 6 simpld ( ⟨ 𝑍 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) )
8 6 simprd ( ⟨ 𝑍 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐶 ) )
9 1 3 4 5 7 8 elhoma ( ⟨ 𝑍 , 𝐹 ⟩ ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = ⟨ 𝑋 , 𝑌 ⟩ ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) )
10 2 9 sylbi ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = ⟨ 𝑋 , 𝑌 ⟩ ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) )
11 10 ibi ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → ( 𝑍 = ⟨ 𝑋 , 𝑌 ⟩ ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
12 11 simpld ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹𝑍 = ⟨ 𝑋 , 𝑌 ⟩ )