Metamath Proof Explorer


Theorem homaf

Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h 𝐻 = ( Homa𝐶 )
homafval.b 𝐵 = ( Base ‘ 𝐶 )
homafval.c ( 𝜑𝐶 ∈ Cat )
Assertion homaf ( 𝜑𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) )

Proof

Step Hyp Ref Expression
1 homarcl.h 𝐻 = ( Homa𝐶 )
2 homafval.b 𝐵 = ( Base ‘ 𝐶 )
3 homafval.c ( 𝜑𝐶 ∈ Cat )
4 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
5 1 2 3 4 homafval ( 𝜑𝐻 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ) )
6 snssi ( 𝑥 ∈ ( 𝐵 × 𝐵 ) → { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) )
7 6 adantl ( ( 𝜑𝑥 ∈ ( 𝐵 × 𝐵 ) ) → { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) )
8 ssv ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⊆ V
9 xpss12 ( ( { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) ∧ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⊆ V ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
10 7 8 9 sylancl ( ( 𝜑𝑥 ∈ ( 𝐵 × 𝐵 ) ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
11 snex { 𝑥 } ∈ V
12 fvex ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ∈ V
13 11 12 xpex ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ V
14 13 elpw ( ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ↔ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
15 10 14 sylibr ( ( 𝜑𝑥 ∈ ( 𝐵 × 𝐵 ) ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) )
16 5 15 fmpt3d ( 𝜑𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) )