Step |
Hyp |
Ref |
Expression |
1 |
|
homarcl.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
2 |
|
homafval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
homafval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
5 |
1 2 3 4
|
homafval |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
6 |
|
snssi |
⊢ ( 𝑥 ∈ ( 𝐵 × 𝐵 ) → { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 × 𝐵 ) ) → { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) ) |
8 |
|
ssv |
⊢ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⊆ V |
9 |
|
xpss12 |
⊢ ( ( { 𝑥 } ⊆ ( 𝐵 × 𝐵 ) ∧ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ⊆ V ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) ) |
10 |
7 8 9
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 × 𝐵 ) ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) ) |
11 |
|
snex |
⊢ { 𝑥 } ∈ V |
12 |
|
fvex |
⊢ ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ∈ V |
13 |
11 12
|
xpex |
⊢ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ V |
14 |
13
|
elpw |
⊢ ( ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ↔ ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ⊆ ( ( 𝐵 × 𝐵 ) × V ) ) |
15 |
10 14
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 × 𝐵 ) ) → ( { 𝑥 } × ( ( Hom ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ) |
16 |
5 15
|
fmpt3d |
⊢ ( 𝜑 → 𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ) |