Metamath Proof Explorer


Theorem homarcl2

Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h 𝐻 = ( Homa𝐶 )
homarcl2.b 𝐵 = ( Base ‘ 𝐶 )
Assertion homarcl2 ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋𝐵𝑌𝐵 ) )

Proof

Step Hyp Ref Expression
1 homahom.h 𝐻 = ( Homa𝐶 )
2 homarcl2.b 𝐵 = ( Base ‘ 𝐶 )
3 elfvdm ( 𝐹 ∈ ( 𝐻 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom 𝐻 )
4 df-ov ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
5 3 4 eleq2s ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom 𝐻 )
6 1 homarcl ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat )
7 1 2 6 homaf ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) )
8 7 fdmd ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → dom 𝐻 = ( 𝐵 × 𝐵 ) )
9 5 8 eleqtrd ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) )
10 opelxp ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑋𝐵𝑌𝐵 ) )
11 9 10 sylib ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋𝐵𝑌𝐵 ) )