Step |
Hyp |
Ref |
Expression |
1 |
|
homahom.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
2 |
|
homarcl2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐻 ) |
4 |
|
df-ov |
⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) |
5 |
3 4
|
eleq2s |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐻 ) |
6 |
1
|
homarcl |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
7 |
1 2 6
|
homaf |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ) |
8 |
7
|
fdmd |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → dom 𝐻 = ( 𝐵 × 𝐵 ) ) |
9 |
5 8
|
eleqtrd |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
10 |
|
opelxp |
⊢ ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
11 |
9 10
|
sylib |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |