| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							homahom.h | 
							⊢ 𝐻  =  ( Homa ‘ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							homarcl2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝐹  ∈  ( 𝐻 ‘ 〈 𝑋 ,  𝑌 〉 )  →  〈 𝑋 ,  𝑌 〉  ∈  dom  𝐻 )  | 
						
						
							| 4 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝑋 𝐻 𝑌 )  =  ( 𝐻 ‘ 〈 𝑋 ,  𝑌 〉 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eleq2s | 
							⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  〈 𝑋 ,  𝑌 〉  ∈  dom  𝐻 )  | 
						
						
							| 6 | 
							
								1
							 | 
							homarcl | 
							⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  𝐶  ∈  Cat )  | 
						
						
							| 7 | 
							
								1 2 6
							 | 
							homaf | 
							⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  𝐻 : ( 𝐵  ×  𝐵 ) ⟶ 𝒫  ( ( 𝐵  ×  𝐵 )  ×  V ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							fdmd | 
							⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  dom  𝐻  =  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							eleqtrd | 
							⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  〈 𝑋 ,  𝑌 〉  ∈  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							opelxp | 
							⊢ ( 〈 𝑋 ,  𝑌 〉  ∈  ( 𝐵  ×  𝐵 )  ↔  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylib | 
							⊢ ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  |