Step |
Hyp |
Ref |
Expression |
1 |
|
homahom.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
2 |
|
xpss |
⊢ ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ⊆ ( V × V ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
4 |
1
|
homarcl |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
5 |
1 3 4
|
homaf |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐻 : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
6 |
1 3
|
homarcl2 |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
7 |
6
|
simpld |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
8 |
6
|
simprd |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
9 |
5 7 8
|
fovrnd |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ∈ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
10 |
|
elelpwi |
⊢ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑋 𝐻 𝑌 ) ∈ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) → 𝑓 ∈ ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
11 |
9 10
|
mpdan |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑓 ∈ ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
12 |
2 11
|
sselid |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑓 ∈ ( V × V ) ) |
13 |
12
|
ssriv |
⊢ ( 𝑋 𝐻 𝑌 ) ⊆ ( V × V ) |
14 |
|
df-rel |
⊢ ( Rel ( 𝑋 𝐻 𝑌 ) ↔ ( 𝑋 𝐻 𝑌 ) ⊆ ( V × V ) ) |
15 |
13 14
|
mpbir |
⊢ Rel ( 𝑋 𝐻 𝑌 ) |