Metamath Proof Explorer


Theorem homarw

Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
arwhoma.h 𝐻 = ( Homa𝐶 )
Assertion homarw ( 𝑋 𝐻 𝑌 ) ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
2 arwhoma.h 𝐻 = ( Homa𝐶 )
3 ovssunirn ( 𝑋 𝐻 𝑌 ) ⊆ ran 𝐻
4 1 2 arwval 𝐴 = ran 𝐻
5 3 4 sseqtrri ( 𝑋 𝐻 𝑌 ) ⊆ 𝐴