Metamath Proof Explorer


Theorem homcl

Description: Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion homcl ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) ∈ ℋ )

Proof

Step Hyp Ref Expression
1 homval ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇𝐵 ) ) )
2 ffvelrn ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇𝐵 ) ∈ ℋ )
3 2 anim2i ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( 𝐴 ∈ ℂ ∧ ( 𝑇𝐵 ) ∈ ℋ ) )
4 3 3impb ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∈ ℂ ∧ ( 𝑇𝐵 ) ∈ ℋ ) )
5 hvmulcl ( ( 𝐴 ∈ ℂ ∧ ( 𝑇𝐵 ) ∈ ℋ ) → ( 𝐴 · ( 𝑇𝐵 ) ) ∈ ℋ )
6 4 5 syl ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · ( 𝑇𝐵 ) ) ∈ ℋ )
7 1 6 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) ∈ ℋ )