Step |
Hyp |
Ref |
Expression |
1 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
2 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
3 |
2
|
anim2i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) ) |
4 |
3
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) ) |
5 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
7 |
1 6
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) |