| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝐵 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) ) ) | 
						
							| 2 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝑇 ‘ 𝐵 )  ∈   ℋ ) | 
						
							| 3 | 2 | anim2i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐵  ∈   ℋ ) )  →  ( 𝐴  ∈  ℂ  ∧  ( 𝑇 ‘ 𝐵 )  ∈   ℋ ) ) | 
						
							| 4 | 3 | 3impb | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ∈  ℂ  ∧  ( 𝑇 ‘ 𝐵 )  ∈   ℋ ) ) | 
						
							| 5 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑇 ‘ 𝐵 )  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) )  ∈   ℋ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) )  ∈   ℋ ) | 
						
							| 7 | 1 6 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝐵 )  ∈   ℋ ) |