Step |
Hyp |
Ref |
Expression |
1 |
|
homfeq.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
2 |
|
homfeq.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
3 |
|
homfeq.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
4 |
|
homfeq.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
5 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
5 6 1
|
homffval |
⊢ ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 𝐻 𝑦 ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
9 |
3 3 8
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
10 |
7 9
|
eqtr4id |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
11 |
|
eqid |
⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
13 |
11 12 2
|
homffval |
⊢ ( Homf ‘ 𝐷 ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐽 𝑦 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
15 |
4 4 14
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐽 𝑦 ) ) ) |
16 |
13 15
|
eqtr4id |
⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ) |
17 |
10 16
|
eqeq12d |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ) ) |
18 |
|
ovex |
⊢ ( 𝑥 𝐻 𝑦 ) ∈ V |
19 |
18
|
rgen2w |
⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) ∈ V |
20 |
|
mpo2eqb |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) ∈ V → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
22 |
17 21
|
bitrdi |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) ) |