| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homfeq.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 2 |  | homfeq.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐷 ) | 
						
							| 3 |  | homfeq.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐶 ) ) | 
						
							| 4 |  | homfeq.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐷 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐶 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 7 | 5 6 1 | homffval | ⊢ ( Homf  ‘ 𝐶 )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 ) ,  𝑦  ∈  ( Base ‘ 𝐶 )  ↦  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 𝐻 𝑦 ) ) | 
						
							| 9 | 3 3 8 | mpoeq123dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐻 𝑦 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 ) ,  𝑦  ∈  ( Base ‘ 𝐶 )  ↦  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 10 | 7 9 | eqtr4id | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐻 𝑦 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Homf  ‘ 𝐷 )  =  ( Homf  ‘ 𝐷 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 ) | 
						
							| 13 | 11 12 2 | homffval | ⊢ ( Homf  ‘ 𝐷 )  =  ( 𝑥  ∈  ( Base ‘ 𝐷 ) ,  𝑦  ∈  ( Base ‘ 𝐷 )  ↦  ( 𝑥 𝐽 𝑦 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥 𝐽 𝑦 )  =  ( 𝑥 𝐽 𝑦 ) ) | 
						
							| 15 | 4 4 14 | mpoeq123dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐽 𝑦 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐷 ) ,  𝑦  ∈  ( Base ‘ 𝐷 )  ↦  ( 𝑥 𝐽 𝑦 ) ) ) | 
						
							| 16 | 13 15 | eqtr4id | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐷 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐽 𝑦 ) ) ) | 
						
							| 17 | 10 16 | eqeq12d | ⊢ ( 𝜑  →  ( ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐷 )  ↔  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐻 𝑦 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐽 𝑦 ) ) ) ) | 
						
							| 18 |  | ovex | ⊢ ( 𝑥 𝐻 𝑦 )  ∈  V | 
						
							| 19 | 18 | rgen2w | ⊢ ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  V | 
						
							| 20 |  | mpo2eqb | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  V  →  ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐻 𝑦 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐽 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 𝐽 𝑦 ) ) ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐻 𝑦 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥 𝐽 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 𝐽 𝑦 ) ) | 
						
							| 22 | 17 21 | bitrdi | ⊢ ( 𝜑  →  ( ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐷 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 𝐽 𝑦 ) ) ) |