| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homfeqd.1 |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 2 |
|
homfeqd.2 |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
| 3 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 4 |
3
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 5 |
4
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) |
| 9 |
6 7 8 1
|
homfeq |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 10 |
5 9
|
mpbird |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |