Metamath Proof Explorer


Theorem homfeqd

Description: If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homfeqd.1 ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
homfeqd.2 ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) )
Assertion homfeqd ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )

Proof

Step Hyp Ref Expression
1 homfeqd.1 ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
2 homfeqd.2 ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) )
3 2 oveqd ( 𝜑 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) )
4 3 ralrimivw ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) )
5 4 ralrimivw ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) )
6 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
7 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
8 eqidd ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) )
9 6 7 8 1 homfeq ( 𝜑 → ( ( Homf𝐶 ) = ( Homf𝐷 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) )
10 5 9 mpbird ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )