| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homfeqval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | homfeqval.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | homfeqval.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐷 ) | 
						
							| 4 |  | homfeqval.1 | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐷 ) ) | 
						
							| 5 |  | homfeqval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | homfeqval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑋 ( Homf  ‘ 𝐶 ) 𝑌 )  =  ( 𝑋 ( Homf  ‘ 𝐷 ) 𝑌 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐶 ) | 
						
							| 9 | 8 1 2 5 6 | homfval | ⊢ ( 𝜑  →  ( 𝑋 ( Homf  ‘ 𝐶 ) 𝑌 )  =  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Homf  ‘ 𝐷 )  =  ( Homf  ‘ 𝐷 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 ) | 
						
							| 12 | 4 | homfeqbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐷 ) ) | 
						
							| 13 | 1 12 | eqtrid | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐷 ) ) | 
						
							| 14 | 5 13 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 15 | 6 13 | eleqtrd | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 16 | 10 11 3 14 15 | homfval | ⊢ ( 𝜑  →  ( 𝑋 ( Homf  ‘ 𝐷 ) 𝑌 )  =  ( 𝑋 𝐽 𝑌 ) ) | 
						
							| 17 | 7 9 16 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑋 𝐻 𝑌 )  =  ( 𝑋 𝐽 𝑌 ) ) |