Metamath Proof Explorer


Theorem homfeqval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homfeqval.b 𝐵 = ( Base ‘ 𝐶 )
homfeqval.h 𝐻 = ( Hom ‘ 𝐶 )
homfeqval.j 𝐽 = ( Hom ‘ 𝐷 )
homfeqval.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
homfeqval.x ( 𝜑𝑋𝐵 )
homfeqval.y ( 𝜑𝑌𝐵 )
Assertion homfeqval ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐽 𝑌 ) )

Proof

Step Hyp Ref Expression
1 homfeqval.b 𝐵 = ( Base ‘ 𝐶 )
2 homfeqval.h 𝐻 = ( Hom ‘ 𝐶 )
3 homfeqval.j 𝐽 = ( Hom ‘ 𝐷 )
4 homfeqval.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
5 homfeqval.x ( 𝜑𝑋𝐵 )
6 homfeqval.y ( 𝜑𝑌𝐵 )
7 4 oveqd ( 𝜑 → ( 𝑋 ( Homf𝐶 ) 𝑌 ) = ( 𝑋 ( Homf𝐷 ) 𝑌 ) )
8 eqid ( Homf𝐶 ) = ( Homf𝐶 )
9 8 1 2 5 6 homfval ( 𝜑 → ( 𝑋 ( Homf𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )
10 eqid ( Homf𝐷 ) = ( Homf𝐷 )
11 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
12 4 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
13 1 12 eqtrid ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
14 5 13 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝐷 ) )
15 6 13 eleqtrd ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
16 10 11 3 14 15 homfval ( 𝜑 → ( 𝑋 ( Homf𝐷 ) 𝑌 ) = ( 𝑋 𝐽 𝑌 ) )
17 7 9 16 3eqtr3d ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐽 𝑌 ) )