Step |
Hyp |
Ref |
Expression |
1 |
|
homfeqval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
homfeqval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
homfeqval.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
4 |
|
homfeqval.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
5 |
|
homfeqval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
homfeqval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 ( Homf ‘ 𝐷 ) 𝑌 ) ) |
8 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
9 |
8 1 2 5 6
|
homfval |
⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
10 |
|
eqid |
⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
12 |
4
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
13 |
1 12
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
14 |
5 13
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
15 |
6 13
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
16 |
10 11 3 14 15
|
homfval |
⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐷 ) 𝑌 ) = ( 𝑋 𝐽 𝑌 ) ) |
17 |
7 9 16
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐽 𝑌 ) ) |