Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | homffn.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
homffn.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
Assertion | homffn | ⊢ 𝐹 Fn ( 𝐵 × 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffn.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
2 | homffn.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
4 | 1 2 3 | homffval | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
5 | ovex | ⊢ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∈ V | |
6 | 4 5 | fnmpoi | ⊢ 𝐹 Fn ( 𝐵 × 𝐵 ) |