Step |
Hyp |
Ref |
Expression |
1 |
|
homffval.f |
⊢ 𝐹 = ( Homf ‘ 𝐶 ) |
2 |
|
homffval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
homffval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
6 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
7 |
6 3
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
8 |
7
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
9 |
5 5 8
|
mpoeq123dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
10 |
|
df-homf |
⊢ Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) |
11 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
12 |
11 11
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ∈ V |
13 |
9 10 12
|
fvmpt |
⊢ ( 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
14 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ∅ ) |
15 |
|
fvprc |
⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ ) |
16 |
2 15
|
eqtrid |
⊢ ( ¬ 𝐶 ∈ V → 𝐵 = ∅ ) |
17 |
16
|
olcd |
⊢ ( ¬ 𝐶 ∈ V → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
18 |
|
0mpo0 |
⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ∅ ) |
19 |
17 18
|
syl |
⊢ ( ¬ 𝐶 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ∅ ) |
20 |
14 19
|
eqtr4d |
⊢ ( ¬ 𝐶 ∈ V → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
21 |
13 20
|
pm2.61i |
⊢ ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) |
22 |
1 21
|
eqtri |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) |