Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homffval.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
| homffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| homffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| homfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| homfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | homfval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffval.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
| 2 | homffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | homffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | homfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | homfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | 1 2 3 | homffval | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) |
| 7 | 6 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 8 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 10 | ovexd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ∈ V ) | |
| 11 | 7 9 4 5 10 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |