Metamath Proof Explorer


Theorem homfval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homffval.f 𝐹 = ( Homf𝐶 )
homffval.b 𝐵 = ( Base ‘ 𝐶 )
homffval.h 𝐻 = ( Hom ‘ 𝐶 )
homfval.x ( 𝜑𝑋𝐵 )
homfval.y ( 𝜑𝑌𝐵 )
Assertion homfval ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 homffval.f 𝐹 = ( Homf𝐶 )
2 homffval.b 𝐵 = ( Base ‘ 𝐶 )
3 homffval.h 𝐻 = ( Hom ‘ 𝐶 )
4 homfval.x ( 𝜑𝑋𝐵 )
5 homfval.y ( 𝜑𝑌𝐵 )
6 1 2 3 homffval 𝐹 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐻 𝑦 ) )
7 6 a1i ( 𝜑𝐹 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) )
8 oveq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
9 8 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
10 ovexd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ∈ V )
11 7 9 4 5 10 ovmpod ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )