Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | homffval.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
homffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
homffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
homfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
homfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
Assertion | homfval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homffval.f | ⊢ 𝐹 = ( Homf ‘ 𝐶 ) | |
2 | homffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | homffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
4 | homfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
5 | homfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
6 | 1 2 3 | homffval | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) |
7 | 6 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
8 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) | |
9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
10 | ovexd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) ∈ V ) | |
11 | 7 9 4 5 10 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |