| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 2 |
1 1
|
elmap |
⊢ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ ) |
| 3 |
|
oveq1 |
⊢ ( 𝑓 = 𝐴 → ( 𝑓 ·ℎ ( 𝑔 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) |
| 4 |
3
|
mpteq2dv |
⊢ ( 𝑓 = 𝐴 → ( 𝑥 ∈ ℋ ↦ ( 𝑓 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 5 |
|
fveq1 |
⊢ ( 𝑔 = 𝑇 → ( 𝑔 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑔 = 𝑇 → ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 |
6
|
mpteq2dv |
⊢ ( 𝑔 = 𝑇 → ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 8 |
|
df-homul |
⊢ ·op = ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 ·ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 9 |
1
|
mptex |
⊢ ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ V |
| 10 |
4 7 8 9
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( ℋ ↑m ℋ ) ) → ( 𝐴 ·op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 |
2 10
|
sylan2br |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |