Metamath Proof Explorer


Theorem homul12

Description: Swap first and second factors in a nested operator scalar product. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion homul12 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) = ( 𝐵 ·op ( 𝐴 ·op 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
2 1 oveq1d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( ( 𝐵 · 𝐴 ) ·op 𝑇 ) )
3 2 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( ( 𝐵 · 𝐴 ) ·op 𝑇 ) )
4 homulass ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) )
5 homulass ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐵 · 𝐴 ) ·op 𝑇 ) = ( 𝐵 ·op ( 𝐴 ·op 𝑇 ) ) )
6 5 3com12 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐵 · 𝐴 ) ·op 𝑇 ) = ( 𝐵 ·op ( 𝐴 ·op 𝑇 ) ) )
7 3 4 6 3eqtr3d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) = ( 𝐵 ·op ( 𝐴 ·op 𝑇 ) ) )