| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 2 |
|
homval |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 3 |
1 2
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 4 |
3
|
3expia |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 5 |
4
|
3impa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 6 |
5
|
imp |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 |
|
homval |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 8 |
7
|
oveq2d |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 9 |
8
|
3expa |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 10 |
9
|
3adantl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 12 |
|
ax-hvmulass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 13 |
11 12
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 14 |
13
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 15 |
14
|
exp43 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( 𝑇 : ℋ ⟶ ℋ → ( 𝑥 ∈ ℋ → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) ) ) |
| 16 |
15
|
3imp1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 17 |
10 16
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 18 |
6 17
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
| 19 |
|
homulcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 20 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
| 21 |
19 20
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
| 22 |
21
|
3expia |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 23 |
22
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
| 25 |
18 24
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ) |
| 26 |
25
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ) |
| 27 |
|
homulcl |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 28 |
1 27
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 29 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 30 |
19 29
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 31 |
30
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 32 |
|
hoeq |
⊢ ( ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) ) |
| 33 |
28 31 32
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) ) |
| 34 |
26 33
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) |