Step |
Hyp |
Ref |
Expression |
1 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
2 |
|
homval |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
3 |
1 2
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
4 |
3
|
3expia |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
5 |
4
|
3impa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
6 |
5
|
imp |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
7 |
|
homval |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
9 |
8
|
3expa |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
10 |
9
|
3adantl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
11 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
12 |
|
ax-hvmulass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
13 |
11 12
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
14 |
13
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
15 |
14
|
exp43 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( 𝑇 : ℋ ⟶ ℋ → ( 𝑥 ∈ ℋ → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) ) ) |
16 |
15
|
3imp1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
17 |
10 16
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝐴 · 𝐵 ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
18 |
6 17
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
19 |
|
homulcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
20 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
21 |
19 20
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
22 |
21
|
3expia |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) ) |
23 |
22
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( ( 𝐵 ·op 𝑇 ) ‘ 𝑥 ) ) ) |
25 |
18 24
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ) |
26 |
25
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ) |
27 |
|
homulcl |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ) |
28 |
1 27
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ) |
29 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ·op 𝑇 ) : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
30 |
19 29
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
31 |
30
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) |
32 |
|
hoeq |
⊢ ( ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) ) |
33 |
28 31 32
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) ‘ 𝑥 ) = ( ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ‘ 𝑥 ) ↔ ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) ) |
34 |
26 33
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 · 𝐵 ) ·op 𝑇 ) = ( 𝐴 ·op ( 𝐵 ·op 𝑇 ) ) ) |