Metamath Proof Explorer


Theorem homulcl

Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion homulcl ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ )

Proof

Step Hyp Ref Expression
1 ffvelrn ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ℋ )
2 hvmulcl ( ( 𝐴 ∈ ℂ ∧ ( 𝑇𝑥 ) ∈ ℋ ) → ( 𝐴 · ( 𝑇𝑥 ) ) ∈ ℋ )
3 1 2 sylan2 ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( 𝐴 · ( 𝑇𝑥 ) ) ∈ ℋ )
4 3 anassrs ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( 𝑇𝑥 ) ) ∈ ℋ )
5 4 fmpttd ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇𝑥 ) ) ) : ℋ ⟶ ℋ )
6 hommval ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇𝑥 ) ) ) )
7 6 feq1d ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ↔ ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇𝑥 ) ) ) : ℋ ⟶ ℋ ) )
8 5 7 mpbird ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ )