| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 2 |
|
homval |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 1 ·op 𝑇 ) ‘ 𝑥 ) = ( 1 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 3 |
1 2
|
mp3an1 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 1 ·op 𝑇 ) ‘ 𝑥 ) = ( 1 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 4 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 5 |
|
ax-hvmulid |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( 1 ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 1 ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
| 7 |
3 6
|
eqtrd |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 1 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 8 |
7
|
ralrimiva |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ∀ 𝑥 ∈ ℋ ( ( 1 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 9 |
|
homulcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 1 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 10 |
1 9
|
mpan |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 11 |
|
hoeq |
⊢ ( ( ( 1 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( ( 1 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 1 ·op 𝑇 ) = 𝑇 ) ) |
| 12 |
10 11
|
mpancom |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ∀ 𝑥 ∈ ℋ ( ( 1 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 1 ·op 𝑇 ) = 𝑇 ) ) |
| 13 |
8 12
|
mpbid |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) = 𝑇 ) |