| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hommval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝐴  ·op  𝑇 )  =  ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) ) ) | 
						
							| 2 | 1 | fveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝐵 )  =  ( ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝐵 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) ) | 
						
							| 6 |  | ovex | ⊢ ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) )  ∈  V | 
						
							| 7 | 4 5 6 | fvmpt | ⊢ ( 𝐵  ∈   ℋ  →  ( ( 𝑥  ∈   ℋ  ↦  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐵 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) ) ) | 
						
							| 8 | 2 7 | sylan9eq | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝐵 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) ) ) | 
						
							| 9 | 8 | 3impa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·op  𝑇 ) ‘ 𝐵 )  =  ( 𝐴  ·ℎ  ( 𝑇 ‘ 𝐵 ) ) ) |