Metamath Proof Explorer


Theorem honegdi

Description: Distribution of negative over addition. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegdi ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op ( 𝑇 +op 𝑈 ) ) = ( ( - 1 ·op 𝑇 ) +op ( - 1 ·op 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 neg1cn - 1 ∈ ℂ
2 hoadddi ( ( - 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op ( 𝑇 +op 𝑈 ) ) = ( ( - 1 ·op 𝑇 ) +op ( - 1 ·op 𝑈 ) ) )
3 1 2 mp3an1 ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op ( 𝑇 +op 𝑈 ) ) = ( ( - 1 ·op 𝑇 ) +op ( - 1 ·op 𝑈 ) ) )