Metamath Proof Explorer


Theorem honegneg

Description: Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegneg ( 𝑇 : ℋ ⟶ ℋ → ( - 1 ·op ( - 1 ·op 𝑇 ) ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 neg1mulneg1e1 ( - 1 · - 1 ) = 1
2 1 oveq1i ( ( - 1 · - 1 ) ·op 𝑇 ) = ( 1 ·op 𝑇 )
3 neg1cn - 1 ∈ ℂ
4 homulass ( ( - 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( - 1 · - 1 ) ·op 𝑇 ) = ( - 1 ·op ( - 1 ·op 𝑇 ) ) )
5 3 3 4 mp3an12 ( 𝑇 : ℋ ⟶ ℋ → ( ( - 1 · - 1 ) ·op 𝑇 ) = ( - 1 ·op ( - 1 ·op 𝑇 ) ) )
6 homulid2 ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) = 𝑇 )
7 2 5 6 3eqtr3a ( 𝑇 : ℋ ⟶ ℋ → ( - 1 ·op ( - 1 ·op 𝑇 ) ) = 𝑇 )