Description: Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | honegneg | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( - 1 ·op ( - 1 ·op 𝑇 ) ) = 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
2 | 1 | oveq1i | ⊢ ( ( - 1 · - 1 ) ·op 𝑇 ) = ( 1 ·op 𝑇 ) |
3 | neg1cn | ⊢ - 1 ∈ ℂ | |
4 | homulass | ⊢ ( ( - 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( - 1 · - 1 ) ·op 𝑇 ) = ( - 1 ·op ( - 1 ·op 𝑇 ) ) ) | |
5 | 3 3 4 | mp3an12 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( - 1 · - 1 ) ·op 𝑇 ) = ( - 1 ·op ( - 1 ·op 𝑇 ) ) ) |
6 | homulid2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) = 𝑇 ) | |
7 | 2 5 6 | 3eqtr3a | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( - 1 ·op ( - 1 ·op 𝑇 ) ) = 𝑇 ) |