Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
2 |
|
homulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) |
3 |
1 2
|
mpan |
⊢ ( 𝑈 : ℋ ⟶ ℋ → ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) |
4 |
|
honegdi |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( - 1 ·op 𝑈 ) : ℋ ⟶ ℋ ) → ( - 1 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( ( - 1 ·op 𝑇 ) +op ( - 1 ·op ( - 1 ·op 𝑈 ) ) ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( ( - 1 ·op 𝑇 ) +op ( - 1 ·op ( - 1 ·op 𝑈 ) ) ) ) |
6 |
|
honegsub |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 +op ( - 1 ·op 𝑈 ) ) = ( 𝑇 −op 𝑈 ) ) |
7 |
6
|
oveq2d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op ( 𝑇 +op ( - 1 ·op 𝑈 ) ) ) = ( - 1 ·op ( 𝑇 −op 𝑈 ) ) ) |
8 |
|
honegneg |
⊢ ( 𝑈 : ℋ ⟶ ℋ → ( - 1 ·op ( - 1 ·op 𝑈 ) ) = 𝑈 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op ( - 1 ·op 𝑈 ) ) = 𝑈 ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( ( - 1 ·op 𝑇 ) +op ( - 1 ·op ( - 1 ·op 𝑈 ) ) ) = ( ( - 1 ·op 𝑇 ) +op 𝑈 ) ) |
11 |
5 7 10
|
3eqtr3d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( - 1 ·op ( 𝑇 −op 𝑈 ) ) = ( ( - 1 ·op 𝑇 ) +op 𝑈 ) ) |