Metamath Proof Explorer


Theorem honpcani

Description: Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2 𝑇 : ℋ ⟶ ℋ
hosd1.3 𝑈 : ℋ ⟶ ℋ
Assertion honpcani ( ( 𝑇op 𝑈 ) +op 𝑈 ) = 𝑇

Proof

Step Hyp Ref Expression
1 hosd1.2 𝑇 : ℋ ⟶ ℋ
2 hosd1.3 𝑈 : ℋ ⟶ ℋ
3 1 2 2 hoaddsubi ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = ( ( 𝑇op 𝑈 ) +op 𝑈 )
4 1 2 hopncani ( ( 𝑇 +op 𝑈 ) −op 𝑈 ) = 𝑇
5 3 4 eqtr3i ( ( 𝑇op 𝑈 ) +op 𝑈 ) = 𝑇